Review: Modulation of striatal neuron activity by cyclic nucleotide signaling and phosphodiesterase inhibition.
نویسندگان
چکیده
The cyclic nucleotides cAMP and cGMP are common signaling molecules synthesized in neurons following the activation of adenylyl or guanylyl cyclase. In the striatum, the synthesis and degradation of cAMP and cGMP is highly regulated as these second messengers have potent effects on the activity of striatonigral and striatopallidal neurons. This review will summarize the literature on cyclic nucleotide signaling in the striatum with a particular focus on the impact of cAMP and cGMP on the membrane excitability of striatal medium-sized spiny output neurons (MSNs). The effects of non-selective and selective phosphodiesterase (PDE) inhibitors on membrane activity and synaptic plasticity of MSNs will also be reviewed. Lastly, this review will discuss the implications of the effects PDE modulation on electrophysiological activity of striatal MSNs as it relates to the treatment of neurological disorders such as Huntington's and Parkinson's disease.
منابع مشابه
Phosphodiesterase 10A Inhibition Improves Cortico-Basal Ganglia Function in Huntington’s Disease Models
Huntington's disease (HD) symptoms are driven to a large extent by dysfunction of the basal ganglia circuitry. HD patients exhibit reduced striatal phoshodiesterase 10 (PDE10) levels. Using HD mouse models that exhibit reduced PDE10, we demonstrate the benefit of pharmacologic PDE10 inhibition to acutely correct basal ganglia circuitry deficits. PDE10 inhibition restored corticostriatal input a...
متن کاملChronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington's disease.
Inhibition of phosphodiesterase 10A (PDE10A) promotes cyclic nucleotide signaling, increases striatal activation, and decreases behavioral activity. Enhanced cyclic nucleotide signaling is a well established route to producing changes in gene expression. We hypothesized that chronic suppression of PDE10A activity would have significant effects on gene expression in the striatum. A comparison of...
متن کاملThe Role of NO/cGMP Signaling on Neuroinflammation: A New Therapeutic Opportunity
The nitric oxide/cyclic guanosine monophosphate (NO/cGMP) signaling appears to play a key role in inhibiting neuroinflammation and preventing the activation of a proapoptotic pathway, thereby promoting neural cell survival. In addition, evidence indicates that cGMP/protein kinase G (PKG) pathway is involved in the modulation of glial cell activity. Phosphodiesterase 5 (PDE5), which hydrolyzes c...
متن کاملPhosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations
The corticostriatal and hippocampal circuits contribute to the neurobiological underpinnings of several neuropsychiatric disorders, including Alzheimer's disease, Parkinson's disease and schizophrenia. Based on biological function, these circuits can be clustered into motor circuits, associative/cognitive circuits and limbic circuits. Together, dysfunctions in these circuits produce the wide ra...
متن کاملInhibition of Phosphodiesterase 10A Increases the Responsiveness of Striatal Projection Neurons to Cortical Stimulation.
The cyclic nucleotide phosphodiesterase 10A (PDE10A) is highly expressed in striatal medium-sized spiny projection neurons (MSNs), apparently playing a critical role in the regulation of both cGMP and cAMP signaling cascades. Genetic disruption or pharmacological inhibition of PDE10A reverses behavioral abnormalities associated with subcortical hyperdopaminergia. Here, we investigate the effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Basal ganglia
دوره 3 3 شماره
صفحات -
تاریخ انتشار 2013